APPLICATION OF MICROBIAL RISK ASSESSMENT OF *Escherichia coli* in Irrigation Water on Lettuce Crop

Rocio Guadalupe Reyes Estevés; Charles P. Gerba; Donald C. Slack

Fecha de presentación 19/septiembre/2019
Mazatlán, Sinaloa, México
Outline

• Introduction
• Materials and Methods
• Results and Discussion
• Conclusions
Introduction

Foodborne diseases

Food safety has been considered as an important global health issue for a long time now (Harris et al., 2003).

The Centers for Disease Control and Prevention (CDC) defines a “foodborne disease outbreak” as when 2 or more people get the same illness from the same contaminated food or drink (CDC, 2011).

In the recent years in the USA, produce has been a commonly reported source of foodborne outbreaks and surveillance reports suggest that produce may account for a higher proportion of multistate foodborne outbreaks compared with other food categories (Scallan E et al., 2011).
Fresh produce: food safety risk

Consumption of fresh fruits and vegetables is important for a balanced diet and healthy life-style.

- Fresh produce potentially poses an increased food safety risk because they are consumed raw or minimally processed.
Produce and leafy greens contamination routes

Leafy greens can become contaminated with:

• Viral or bacterial pathogens in the field through:
 • soil,
 • feces,
 • irrigation water,
 • animals, insects
 • manure,
 • biosolids,
 • pesticides, and fertilizers,

• Harvest & postharvest operations (harvesting equipment, transport containers, and dust) food handlers in food service establishments, etc.
Irrigation with contaminated water increases the health risk due to the presence of high concentrations of pathogens such as bacteria, viruses, protozoa and helminths (Toze, 2006).

Escherichia coli O157:H7 have been found to be one of the leading causes of the produce-related foodborne outbreaks (Olsen et al., 2000).
E. coli O157:H7 linked to leafy greens

• The 2006 outbreak linked to *E. coli*–contaminated spinach that resulted in 205 confirmed cases and three deaths served as a promoter for research efforts to ensure the safety of leafy greens (CDC, 2006).

• *E. coli* has been also linked to foodborne outbreaks associated with the consumption of lettuce (Hilborn et al., 1999).

• Last year the FDA investigated the multistate outbreak of *E. coli* infections linked to romaine lettuce from Yuma growing region.
 • CDC laboratory testing identified the outbreak of *E. coli* O157:H7 in water samples taken from a canal in the Yuma growing region.
 • Whole Genome Sequencing (WGS) showed that the *E. coli* O157:H7 found in the canal water is related genetically to the *E. coli* O157:H7 from ill people.
 • FDA is continuing to investigate how the *E. coli* bacteria could have entered the water and ways this water could have contaminated romaine lettuce in the region.
E. coli outbreaks investigations in leafy greens by Year

<table>
<thead>
<tr>
<th>Date</th>
<th>Investigation Description</th>
<th>Total Illnesses</th>
<th>Hospitalizations</th>
<th>Deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>February 13, 2019</td>
<td>Outbreak Investigation of E. coli O157:H7 Linked to Romaine Lettuce Grown in CA</td>
<td>62</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>November 1, 2018</td>
<td>FDA Investigated Multistate Outbreak of E. coli O157:H7 Infections Linked to Romaine Lettuce from Yuma Growing Region</td>
<td>210</td>
<td>96</td>
<td>5</td>
</tr>
<tr>
<td>February 28, 2018</td>
<td>FDA Ends Investigation of E. coli O157:H7 Outbreak Likely Linked to Leafy Greens</td>
<td>25</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>December 11, 2013</td>
<td>Lettuce: FDA Investigation Summary - Multistate Outbreak of E. coli O157:H7 Illnesses Linked to Ready-to-Eat Salads</td>
<td>33</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>December 10, 2012</td>
<td>FDA Investigates E. coli O157:H7 Illnesses Linked to Organic Spinach and Spring Mix Blend</td>
<td>33</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Quantitative microbial risk assessment (QMRA)

- Water from surface sources should not pose a risk of infection from waterborne pathogens greater than 1:10,000 per year according to the U.S. Environmental Protection Agency (EPA, 1989).

This value has been used to evaluate risk associated with the quality of irrigation water (Petterson et al. 2001).

- Quantitative Microbial Risk Assessment (QMRA) is an approach that allows the quantitative expression of risk in terms of infection, illness, or mortality from microbial pathogens.

It is a key factor in all decision making for determining the urgency of problems and the allocation of resources to reduce risks. (Haas et al., 1999).
The present study focuses on the risk to consumers of lettuce irrigated with *E. coli*-contaminated water.

Risks for farmers and workers are not in the scope of this work.

Decay of microorganisms during storage and processing were not considered either.

Standard QMRA techniques (Haas et al. 1999) were used to estimate risks of infection from model pathogen-ingestion scenarios.
Quantitative Microbial Risk Assessment (QMRA) paradigm

The risk assessment paradigm involves four steps:

1. Hazard identification
2. Exposure assessment
3. Dose response
4. Risk characterization
1. Hazard Identification: *E. coli*

• *Escherichia coli* (*E. coli*) is a Gram-negative, rod-shaped, facultative anaerobic bacterium.

Healthy cattle are a reservoir of *E. coli* O157:H7.

Common symptoms include:
• Severe bloody diarrhea
• Abdominal cramps
• Little or no fever

Complications
• Hemolytic Uremic Syndrome develops in about 5% of reported *E. coli* O157:H7 cases, most frequently in young children or the elderly.

2. Exposure assessment: Transfer of *E. coli* O157:H7 from water to Lettuce Plants

Transfer of low numbers of *E. coli* O157:H7 from water to growing lettuce plants was reviewed. Mootian et al. (2009) determined the transfer of *Escherichia coli* O157:H7 from water to growing green ice leaf lettuce (*Lactuca sativa* L.).

Lettuce plants, young (12 days of age at exposure to contaminated water) or mature (30 days of age at exposure to contaminated water), were irrigated with water containing 10^1, 10^2, 10^3, or 10^4 CFU *E. coli* O157:H7 per ml.

Young plants (12 days) were harvested at 1, 10, 20, and 30 days postexposure.

Mature plants (30 days) were harvested at 1, and 15 days postexposure.

Harvested plants were processed to determine whether *E. coli* O157:H7 was associated with the leafy surfaces or within internal locations.

The outer leaves were allowed to touch the soil, to closely model in-field conditions. (Tables 1 and 2).
2. Exposure assessment: Transfer of *E. coli* O157:H7 from water to Lettuce Plants

Table 1. Contamination of 12-day-old lettuce plants, after exposure to *E. coli*-contaminated irrigation water (Mootian et al., 2009).

<table>
<thead>
<tr>
<th>Location</th>
<th>Day(s) after exposure</th>
<th>Concentration of E. coli (CFU/ml) in contaminated irrigation water</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>10^1</td>
</tr>
<tr>
<td>Leaf surface</td>
<td>1</td>
<td>0/6</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>3/6</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0/6</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>6/6</td>
</tr>
<tr>
<td>Internal</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1/6</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0/6</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0/6</td>
</tr>
</tbody>
</table>

*Samples tested positive. Values are number of positive plants/number of plants tested.
2. Exposure assessment: Transfer of E. coli O157:H7 from water to Lettuce Plants

Table 2. Contamination of 30-day-old lettuce plants, after exposure to E. coli-contaminated irrigation water (Mootian et al., 2009).

<table>
<thead>
<tr>
<th>Location</th>
<th>Day(s) after exposure</th>
<th>Concentration of E. coli (CFU/ml) in contaminated irrigation water</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>10¹</td>
</tr>
<tr>
<td>Leaf surface</td>
<td>1</td>
<td>1/6</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>5/6</td>
</tr>
<tr>
<td>Internal</td>
<td>1</td>
<td>0/6</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>1/6</td>
</tr>
</tbody>
</table>

*Samples tested positive. Values are number of positive plants/number of plants tested.
3. Dose–response assessment

- Quantitating the adverse effects arising from exposure to *E. coli* based on the degree of exposure. This assessment is expressed mathematically as a plot showing the probability of infection to increasing doses (consumption *E. coli*).

- The steps taken to quantify the risk of microbial infection and the assumptions used are summarized in Table 3 with surface-irrigated 30-day-old lettuce contaminated by 10^4 CFU/ml of *E. coli* level as an example.

Table 3. Risk assessment steps and assumptions used to calculate the risk of infection of *E. coli* in lettuce.

<table>
<thead>
<tr>
<th>Risk Assessment Steps</th>
<th>Assumptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculation of the annual risk of infection</td>
<td>1:10,000</td>
</tr>
<tr>
<td>Amount of fresh produce consumed per capita/year</td>
<td>4416.5 g</td>
</tr>
<tr>
<td>Contamination rate of 30-day-old lettuce</td>
<td>3/6 samples tested positive</td>
</tr>
<tr>
<td>Concentration of E. coli in irrigation water to achieve 1:10,000 risk of infection</td>
<td>10^4 CFU/ml</td>
</tr>
</tbody>
</table>
4. Dose–response assessment

• The Beta-Poisson model can be used to quantify the risk of microbial ingestion. The model gives the following equation (Haas et al., 1999):

\[
P_i = 1 - \left[1 + \left(\frac{d}{N_{50}}\right)\left(2^{1/\alpha} - 1\right)\right]^{-\alpha}
\]

\(P_i\) is the risk of infection by ingesting pathogens in drinking water, \(d\) is the dose of microorganisms ingested, \(N_{50}\) is the microbial dose resulting in 50% infection, and \(\alpha\) is a slope parameter.

• The best-fit dose-response parameters \(N_{50}\) and \(\alpha\) for ingestion of \textit{E. coli} (DuPont et al., 1971) are reported in Table 4.

\begin{table}[h]
\centering
\begin{tabular}{|l|c|c|}
\hline
\textbf{Organism} & \textbf{Beta-Poisson model} & \\
\hline
 & \textit{N}_{50} & \alpha \\
\hline
\textit{Escherichia coli} & 2.11 \times 10^6 & 0.155 \\
\hline
\end{tabular}
\caption{Best fit dose-response parameters (DuPont et al., 1971).}
\end{table}
4. Dose–response assessment

- The annual acceptable risk of infection \((P_A) \) was determined with the following equation (Haas et al., 1999):

\[
P_A = 1 - (1 - P_i)^{365}
\]

(2)

where \(P_A \) is the annual risk, which was assumed to be the U.S. Environmental Protection Agency (EPA) benchmark annual acceptable risk of infection of 1:10,000 for drinking water.

- The dose \((d) \) was determined with the following equation:

\[
d = (L \times P_p \times N_{pc})/10,000
\]

(3)

where \(L \) is the level of \(E. \ coli \) to achieve the levels \(10^1, 10^2, 10^3, \) or \(10^4 \) CFU/ml in irrigation water, \(P_p \) is the number of positive plants/number of plants tested, and \(N_{pc} \) the amount of produce items consumed which was determined by adjusted annual per capita consumption of lettuce of 4,416.5 g (Alum, A. 2001; Stine et al., 2005).
Results and Discussion

4. Risk characterization

The worst-case scenario was found when produce is harvested the day after the last irrigation and maximum contamination level is used, for mature lettuce plants (Table 6).

For young plants the worst-case scenario was found when produce is harvested one day and ten days after the last irrigation and maximum contamination level is used (Table 5).

Both results indicate that the concentrations needed to achieve an annual 1:10,000 risk of infection were as low as 10^4 CFU/100 ml of *E. coli* in irrigation water.

If the EPA guideline is applied to produce that is consumed raw, then the irrigation water should not contain any *E. coli* above concentrations of 10^3 CFU/ml at least.
4. Risk characterization

Table 5. Calculated annual risk of infection from consumption of 12-day-old lettuce, with the four *E. coli* concentrations analyzed.

\[
P_A = 1 - (1 - P_i)^{365}
\]

<table>
<thead>
<tr>
<th>Location</th>
<th>Day(s) after exposure</th>
<th>Concentration of E. coli (CFU/ml) in contaminated irrigation water</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>10(^1)</td>
</tr>
<tr>
<td>Leaf surface</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>Internal</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0</td>
</tr>
</tbody>
</table>
4. Risk characterization

Table 6. Calculated annual risk of infection from consumption of 30-day-old lettuce, with four different E. coli concentrations.

\[
P_A = 1 - (1 - P_i)^{365}
\]

<table>
<thead>
<tr>
<th>Location</th>
<th>Day(s) after exposure</th>
<th>Concentration of E. coli (CFU/ml) in contaminated irrigation water</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(10^1)</td>
</tr>
<tr>
<td>Leaf surface</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>Internal</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0</td>
</tr>
</tbody>
</table>
4. Risk characterization

Table 7. Calculated *E. coli* dose (CFU/g) consumed from 12-day-old lettuces irrigated with different *E. coli* concentrations.

<table>
<thead>
<tr>
<th>Location</th>
<th>Day(s) after exposure</th>
<th>Concentration of E. coli (CFU/ml) in contaminated irrigation water</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>10^1</td>
</tr>
<tr>
<td>Leaf surface</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>2.21</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>4.42</td>
</tr>
<tr>
<td>Internal</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.74</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0</td>
</tr>
</tbody>
</table>

$$d = \frac{L \times P_p \times N_{pc}}{10,000}$$
4. Risk characterization

\[d = \left(\frac{L \times P_p \times N_{pc}}{10000} \right) \]

Table 8. Calculated *E. coli* dose (CFU/g) consumed from 30-day-old lettuces irrigated with different *E. coli* concentrations.

<table>
<thead>
<tr>
<th>Location</th>
<th>Day(s) after exposure</th>
<th>Concentration of E. coli (CFU/ml) in contaminated irrigation water</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>10^1</td>
</tr>
<tr>
<td>Leaf surface</td>
<td>1</td>
<td>0.74</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>3.68</td>
</tr>
<tr>
<td>Internal</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.74</td>
</tr>
</tbody>
</table>
4. Risk characterization

Figure 1. Dose-Response Model for consumption of *E. coli* (CFU).
Conclusions

QMRA is an important tool for assessing the risk involved in irrigation water, both in terms of the formulation of the risk analysis problem and in predicting the probability of infection in different scenarios.

Results suggest that lettuce exposed to and grown in the presence of low numbers of *E. coli* O157:H7 may become contaminated and thus present a human health risk.

Concentrations needed to achieve an annual 1:10,000 risk of infection were as low as 10^4 CFU/100 ml of *E. coli* in irrigation water.

Contamination of lettuce close to harvest may increase the risk of the pathogen being present on the crop.

If the EPA guideline is applied to produce that is consumed raw, then the irrigation water should not contain any *E. coli* above concentrations of 10^3 CFU/ml at least.

Future efforts must center on avoiding human pathogen contamination of produce.
References

Contact information

Rocio Guadalupe Reyes Esteves
Charles Peter Gerba
Donald Carl Slack

The University of Arizona

rocior@email.arizona.edu
gerba@ag.arizona.edu
slackd@email.arizona.edu